

Measures against Outflow of Manganese from a Deep-depth Reservoir in Winter

Y. Kobayashi*, H. Imai**, Y. Yoneda***, Y. Shinoda****, K. Tsuchiya****, S. Kimura*****, K. Takahashi******

* Bureau of Waterworks, Tokyo Metropolitan Government, 2-8-1 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, JP, * kobayashi-yasuhiro@waterworks.metro.tokyo.jp

Introduction

Ogouchi reservoir is one of the largest reservoirs used exclusively for supplying drinking water in Japan. In February 2010, DW (discharged water) containing high concentration of D-Mn (dissolved manganese) flowed out from the reservoir and exerted serious influence on the downstream water treatment plant.

The Bureau of Waterworks, Tokyo Metropolitan Government (hereinafter referred to as, "Tokyo Waterworks") intended to predict the timing of the overflow of DW containing high concentration of D-Mn.

In addition, Tokyo Waterworks examined the water treatment methods by the combined use of PAC (powdered activated carbon) or SPAC (super powdered activated carbon) and chlorine.

Fig. 1 Ogouchi dam

1. Investigations of the Reservoir

Material and Methods | What is the behavior of Mn?

Fig. 2 Sampling points Ogouchi reservoir

Table 1 Contents of the Investigations

Investigations by depth	Measurement items	Frequency
Water Quality	General Items, Metals, etc.	1–4 / month
Sediment	General Items, Metals, etc.	1–2 / month
Elevating automatic water quality meter	WT, pH, EC, DO, etc.	Continuous * Only st 1 and DW

2. Mn Removal Examinations with PAC

Material and Methods | Lab Test

 Table 2 Conditions of the jar test

Contents	Conditions	
Initial concentration of N	/In 0.2 mg/L	
Adjusted pH value	Approx. 7	
PAC injection rates	PAC 0–200 mg/L * SPAC 0–50 mg/L	
Chlorine injection rates	PAC 0, 1 and 10 mg/L * SPAC 1–16 mg/L	
PAC contact time	30 min	
Chlorine contact time	Immediately before injecting coagulant	
Raw waterPAC- PreparationChlorine	Jar test Jar test Measurement	
/ D-Mn / Phosphate buffer	Rapid / 120 rpm, 2 min MF / 0.45 μm Slow / 60 rpm, 10 min / 0.1 μm * SPA Settling / 10 min ICP-MS	
Fig	6 Procedure of the jar test	

Results and Discussion | Flows of Mn outflow

Tokyo Waterworks considered the outflow of high concentration of D-Mn progressed in three steps.

Step 1 | -----

High concentration of D-Mn existed in the BW (bottom water) (Fig.3 D-Mn concentration of BW and DW at st 1).

Step 2 | -----

Natural total circulation started as the difference of WT between the surface layer and the bottom one disappeared (Fig. 4).

Step 3 |

Upper water containing DO (dissolved oxygen) was mixed by natural total circulation, and BW diffused into all layers (Fig. 5).

Results and Discussion | Can Mn be removed with PAC !?

In order to prevent D-Mn leakage from the water treatment plant, Tokyo Waterworks examined whether it is possible to use PAC injection facility introduced for countering moldy odor (2-methylisoborneol, geosmin).

Removal examination with PAC

Fig. 7 Removal examination with PAC

Removal examination with SPAC

D-Mn was hardly removed with PAC alone.However, after injection of chlorine

at the rate of 10 mg/L, the higher rates of PAC injection, the lower concentration of D-Mn will be.

The removal mechanism of the combination of PAC and chlorine is presumed that a trace amount of Mn adhering to PAC shows the same catalytic action as manganese sand.

 Aiming at application to actual water purification processing, Tokyo Waterworks is investigating further detailed conditions.

www.iwahq.org